Jun. 2nd, 2016

spectat: (mask)
<...>
— Распознавание изображений, образов связано с работой так называемых нейронных сетей — некоторых компьютерных алгоритмов, которые, насколько я понимаю, "умеют" сами себя обучать. Можете рассказать, как устроена их работа?

— К сожалению, нет. До сих пор математического объяснения работе нейронных сетей не существует. Грубо говоря, мы не понимаем законов физики, которые задействованы в их работе. И сейчас, по сути, среди самых талантливых математиков во всем мире объявлен негласный конкурс на то, кто первый объяснит, как все это устроено. Многие математики рассматривают это как главный вызов в своей жизни.

— Значит, ученые создали нечто такое, что сами не могут объяснить?

— Да, удивительная вещь, но в этом отношении мы вернулись в XVI век, когда ученые наблюдали какой-то эффект, но не могли его объяснить. Человечество не сталкивалось с подобным, наверное, со времен Галилея. Это касается нейронных систем, так называемых систем Deep learning — глубинного обучения, и так далее.

— Но все же есть какой-то принцип, который лежит в основе этих систем?

— Есть некоторый подход, основанный на работе сетей с большим количество уровней, которые некоторым таинственным образом умеют тренироваться. Мы вводим туда определенный объем информации, они каким-то образом его обрабатывают, выделяют в нем важные вещи и выдают некий новый продукт. Сам этот процесс обучения на самом деле достаточно мистический, потому что непонятно, как это происходит. Там, внутри, конечно, работают некоторые математические алгоритмы, в том числе оптимизационные и тому подобные, но как в целом устроен процесс, мы не понимаем. В мире есть математические гуру, которые умеют создавать настоящие нейронные сети. Это похоже на кулинарный рецепт наших бабушек, которые всего добавляли по щепотке на глаз, но на словах не могли объяснить, как же варить щи.

— Что это за люди?

— Западные математики между собой называют их шаманами. Их всего несколько человек в мире, и это, без преувеличения, самая востребованная и самая высокооплачиваемая сегодня категория людей. Они умеют делать так, что нейросеть начинает думать. Среди лидеров направления — Джошуа Беньо (Монреальский институт изучения алгоритмов), Ян Лекун (руководитель Центра изучения данных при Нью-Йоркском университете), Алекс Крижевский (Университет Торонто). Это, безусловно, самое интересное, что сейчас творится в области прикладных вещей.
<...>


Отсюда: «Мы уже живем в новой реальности»/ Александр Кулешов — об искусственной нейросети, которая уже умеет думать, и об информационном поле

Profile

spectat: (Default)
Viladi maniyev

December 2016

S M T W T F S
     12 3
45678 9 10
1112131415 16 17
1819 2021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Sep. 24th, 2017 06:58 am
Powered by Dreamwidth Studios